Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
FEBS J ; 289(6): 1385-1427, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-33650300

RESUMEN

In the last several years, there has been a tremendous progress in the understanding of host-pathogen interactions and the mechanisms by which bacterial pathogens modulate behavior of the host cell. Pathogens use secretion systems to inject a set of proteins, called effectors, into the cytosol of the host cell. These effectors are secreted in a highly regulated, temporal manner and interact with host proteins to modify a multitude of cellular processes. The number of effectors varies between pathogens from ~ 30 to as many as ~ 350. The functional redundancy of effectors encoded by each pathogen makes it difficult to determine the cellular effects or function of individual effectors, since their individual knockouts frequently produce no easily detectable phenotypes. Structural biology of effector proteins and their interactions with host proteins, in conjunction with cell biology approaches, has provided invaluable information about the cellular function of effectors and underlying molecular mechanisms of their modes of action. Many bacterial effectors are functionally equivalent to host proteins while being structurally divergent from them. Other effector proteins display new, previously unobserved functionalities. Here, we summarize the contribution of the structural characterization of effectors and effector-host protein complexes to our understanding of host subversion mechanisms used by the most commonly investigated Gram-negative bacterial pathogens. We describe in some detail the enzymatic activities discovered among effector proteins and how they affect various cellular processes.


Asunto(s)
Proteínas Bacterianas , Bacterias Gramnegativas , Proteínas Bacterianas/metabolismo , Biología , Bacterias Gramnegativas/genética , Bacterias Gramnegativas/metabolismo , Interacciones Huésped-Patógeno
2.
Biomolecules ; 11(12)2021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34944446

RESUMEN

Legionella pneumophila is a Gram-negative intracellular pathogen that causes Legionnaires' disease in elderly or immunocompromised individuals. This bacterium relies on the Dot/Icm (Defective in organelle trafficking/Intracellular multiplication) Type IV Secretion System (T4SS) and a large (>330) set of effector proteins to colonize the host cell. The structural variability of these effectors allows them to disrupt many host processes. Herein, we report the crystal structure of MavL to 2.65 Å resolution. MavL adopts an ADP-ribosyltransferase (ART) fold and contains the distinctive ligand-binding cleft of ART proteins. Indeed, MavL binds ADP-ribose with Kd of 13 µM. Structural overlay of MavL with poly-(ADP-ribose) glycohydrolases (PARGs) revealed a pair of aspartate residues in MavL that align with the catalytic glutamates in PARGs. MavL also aligns with ADP-ribose "reader" proteins (proteins that recognize ADP-ribose). Since no glycohydrolase activity was observed when incubated in the presence of ADP-ribosylated PARP1, MavL may play a role as a signaling protein that binds ADP-ribose. An interaction between MavL and the mammalian ubiquitin-conjugating enzyme UBE2Q1 was revealed by yeast two-hybrid and co-immunoprecipitation experiments. This work provides structural and molecular insights to guide biochemical studies aimed at elucidating the function of MavL. Our findings support the notion that ubiquitination and ADP-ribosylation are global modifications exploited by L. pneumophila.


Asunto(s)
Legionella pneumophila/crecimiento & desarrollo , Sistemas de Secreción Tipo IV/química , Sistemas de Secreción Tipo IV/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Adenosina Difosfato Ribosa/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Células HEK293 , Células HeLa , Humanos , Legionella pneumophila/enzimología , Modelos Moleculares , Unión Proteica , Conformación Proteica , Pliegue de Proteína , Células THP-1 , Ubiquitinación
3.
mBio ; 12(1)2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33563829

RESUMEN

Diversion of the Legionella pneumophila-containing vacuole (LCV) from the host endosomal-lysosomal degradation pathway is one of the main virulence features essential for manifestation of Legionnaires' pneumonia. Many of the ∼350 Dot/Icm-injected effectors identified in L. pneumophila have been shown to interfere with various host pathways and processes, but no L. pneumophila effector has ever been identified to be indispensable for lysosomal evasion. While most single effector mutants of L. pneumophila do not exhibit a defective phenotype within macrophages, we show that the MavE effector is essential for intracellular growth of L. pneumophila in human monocyte-derived macrophages (hMDMs) and amoebae and for intrapulmonary proliferation in mice. The mavE null mutant fails to remodel the LCV with endoplasmic reticulum (ER)-derived vesicles and is trafficked to the lysosomes where it is degraded, similar to formalin-killed bacteria. During infection of hMDMs, the MavE effector localizes to the poles of the LCV membrane. The crystal structure of MavE, resolved to 1.8 Å, reveals a C-terminal transmembrane helix, three copies of tyrosine-based sorting motifs, and an NPxY eukaryotic motif, which binds phosphotyrosine-binding domains present on signaling and adaptor eukaryotic proteins. Two point mutations within the NPxY motif result in attenuation of L. pneumophila in both hMDMs and amoeba. The substitution defects of P78 and D64 are associated with failure of vacuoles harboring the mutant to be remodeled by the ER and results in fusion of the vacuole to the lysosomes leading to bacterial degradation. Therefore, the MavE effector of L. pneumophila is indispensable for phagosome biogenesis and lysosomal evasion.IMPORTANCE Intracellular proliferation of Legionella pneumophila within a vacuole in human alveolar macrophages is essential for manifestation of Legionnaires' pneumonia. Intravacuolar growth of the pathogen is totally dependent on remodeling the L. pneumophila-containing vacuole (LCV) by the ER and on its evasion of the endosomal-lysosomal degradation pathway. The pathogen has evolved to inject ∼350 protein effectors into the host cell where they modulate various host processes, but no L. pneumophila effector has ever been identified to be indispensable for lysosomal evasion. We show that the MavE effector localizes to the poles of the LCV membrane and is essential for lysosomal evasion and intracellular growth of L. pneumophila and for intrapulmonary proliferation in mice. The crystal structure of MavE shows an NPxY eukaryotic motif essential for ER-mediated remodeling and lysosomal evasion by the LCV. Therefore, the MavE effector of L. pneumophila is indispensable for phagosome biogenesis and lysosomal evasion.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Legionella pneumophila/genética , Legionella pneumophila/patogenicidad , Lisosomas/microbiología , Macrófagos/microbiología , Animales , Proteínas Bacterianas/química , Células Cultivadas , Cristalización , Interacciones Huésped-Patógeno , Humanos , Ratones , Transporte de Proteínas , Vacuolas/microbiología , Virulencia
4.
FEBS J ; 286(4): 710-725, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30479037

RESUMEN

Legionella pneumophila is a freshwater bacterium that replicates in predatory amoeba and alveolar macrophage. The ability of L. pneumophila to thrive in eukaryotic host cells is conferred by the Legionella containing vacuole (LCV). Formation and intracellular trafficking of the LCV are governed by an arsenal of effector proteins, many of which are secreted by the Icm/Dot Type 4 Secretion System. One such effector, known as LpnE (L. pneumophila Entry), has been implicated in facilitating bacterial entry into host cells, LCV trafficking, and substrate translocation. LpnE belongs to a subfamily of tetratricopeptide repeat proteins known as Sel1-like repeats (SLRs). All eight of the predicted SLRs in LpnE are required to promote host cell invasion. Herein, we report that LpnE(1-375) localizes to cis-Golgi in HEK293 cells via its signal peptide (aa 1-22). We further verify the interaction of LpnE(73-375) and LpnE(22-375) with Oculocerebrorenal syndrome of Lowe protein (OCRL) residues 10-208, restricting the known interacting residues for both proteins. To further characterize the SLR region of LpnE, we solved the crystal structure of LpnE(73-375) to 1.75Å resolution. This construct comprises all SLRs, which are arranged in a superhelical fold. The α-helices forming the inner concave surface of the LpnE superhelix suggest a potential protein-protein interaction interface. DATABASE: Coordinates and structure factors were deposited in the Protein Data Bank with the accession number 6DEH.


Asunto(s)
Proteínas Bacterianas/metabolismo , Citosol/metabolismo , Aparato de Golgi/metabolismo , Legionella pneumophila/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Cristalización , Células HEK293 , Humanos , Monoéster Fosfórico Hidrolasas/genética , Conformación Proteica , Homología de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...